www.852000.com当前位置:主页 > www.852000.com >

曾道人01 引言

发表时间: 2020-01-26

  我认为投资专业的学生只需要两门教授得当的课堂:如何评估一家公司,以及如何考虑市场价格。——巴菲特

  本文延续“手把手教你使用Python的TA-Lib”系列,以资金流量指标(MFI)为例,使用Python编写简单的回测框架,着重介绍动量指标(Momentum Indicators)及其运用。前面推文【手把手教你】股市技术分析利器之TA-Lib(一)主要探讨了重叠指标的相关原理与Python实现,【手把手教你】股市技术分析利器之TA-Lib(二) 着重介绍TA-Lib中强大的数学运算、数学变换、统计函数、价格变换、周期指标和波动率指标函数及其应用实例。【手把手教你】量价关系分析与Python实现,则主要介绍了交易量指标(Volume Indicators)及其运用。TA-Lib的安装与使用见之前推文。

  动量指标,英文全称为 Momentum Indicators,是一种利用动力学原理,研究股价在波动过程中趋势与反转现象的技术指标。动量指标建立在价格与供求关系的基础上,认为股价的涨跌幅随着时间的推移逐渐变小,股价变化的速度和能量慢慢减缓后,行情可能发生反转。常见的动量指标包括ADX、CMO、MACD、RSI、KDJ、动量指数(MOM)和威廉指标等。TA-Lib 库里的动量指标类函数如下表所示。

  下面以大家比较少见的资金流量指标(Money Flow Index, 简称MFI)为例,详细介绍动量类指标的分析框架和应用。MFI指标(Money Flow Index)是1989年3月由JWellesWilders提出来的,结合考虑了价和量,相当于成交量的RSI指标。一般而言,价涨量增及价跌量缩是一种惯性作用.股价进行波段涨升时,成交量必须伴随上升。

  超买超卖信号:当MFI80时为超买,在其回头向下跌破80时,为短线卖出时机。

  下面结合MFI 指标的超买超卖法则,以上证指数为标的,使用 Python 对其进行历史回测,主要利用了pandas、numpy、talib和matplotlib进行数据处理和可视化。

  #注意下面的%命令只能在jupyter notebook上运行,否则需要删除或注释掉

  #计算每天的仓位,当天持有上证指数时,仓位为1,当天不持有上证指数时,仓位为0

  下面将数据获取、策略计算和历史回测打包成一个strategy函数,对不同参数组合和时间区间进行历史回测,通过下图不难发现,经验总结得出的20/80超卖超买信号效果并不理想,但将超买值改为90后,反而获得了更好的效果。总体而言,MFI指标相对于不择时而言,最大回撤要小很多,即持仓风险小,但是也意味着可能赚不到疯狂上涨的钱。此外,2016年或2017年以来MFI回测效果比较好,特别是将超买值改为90后,而2000、2005或2009以来的回测效果可能还不如大盘,反映了时间周期越长,MFI指标的效果越差,事实上,MFI指标是一个提供中短期买卖信号的技术指标。

  本文以MFI指标为例,简要介绍了动量指标的原理及其Python量化运用实例,由于篇幅有限,只给出了部分核心代码,完整代码可通过加入知识星球获取。

  在指标运用中,不少交易者会产生困惑,有时指标严重超买,股价却继续上涨,或指标严重超卖,股价仍未止跌企稳。其实这是混淆了技术指标与股价的关系,指标并不能决定股价涨跌,曾道人升级后的FIIL T1 X:极致的体验让你不得不爱6合彩股价才决定指标的大小,股价是因,指标是果,由因可推出果,但由果来导出因可能不准确。既然那样,技术指标还有什么用呢?

  其实技术分析就如温度计,能够测量当前温度,却不能预测也不能决定未来温度。换句话说,技术指标虽不能预测未来走势,但可以衡量当前市场交投情况,用于确认趋势。也就是说技术指标可以作为辅助参考作用,当股价趋势继续上涨或下跌时,指标也将继续超买或超卖,而当股价一旦发生转势,指标随后也会发生转势买卖信号,为仓位管理和择时提供技术上的参考。

  专注于分享Python在金融量化领域的应用。加入知识星球,可以免费获取30多g的量化投资视频资料、公众号文章Python完整源码、量化投资前沿分析框架,与博主直接交流、结识圈内朋友等。